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Abstract

For an undirected tree with edges labeled by single letters, we consider its sub-
strings, which are labels of the simple paths between two nodes. A palindrome is
a word w equal to its reverse wR. We prove that the maximum number of distinct
palindromic substrings in a tree of n edges satisfies PAL(n) = O(n1.5). This solves
an open problem of Brlek, Lafrenière, and Provençal (DLT 2015 [4]), who showed
that PAL(n) = Ω(n1.5). Hence, we settle the tight bound of Θ(n1.5) for the maxi-
mum palindromic complexity of trees. For standard strings, i.e., for trees that are
simple paths, the maximum palindromic complexity is exactly n + 1.

We also propose an O(n1.5 log0.5 n)-time algorithm reporting all distinct palin-
dromes and an O(n log2 n)-time algorithm finding the longest palindrome in a tree.
Mathematics Subject Classifications: 05C05, 68W32

1 Introduction

Regularities in words are extensively studied in combinatorics and text algorithms. Among
the basic types of such structures are palindromes: symmetric words that are the same

∗A preliminary version of this paper, without algorithmic results, was presented at SPIRE 2015 [11].
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when read in both directions. The palindromic complexity of a word is the number of dis-
tinct palindromic substrings in the word. An elegant argument shows that the palindromic
complexity of a word of length n does not exceed n + 1 [8], which is already attained by
a unary word an. Therefore, the problem of maximum palindromic complexity for words
is completely settled, and a natural next step is to generalize it to trees.

In this paper, we consider the palindromic complexity of undirected trees with edges
labeled by single letters. We define the substrings of such a tree as the labels of simple
paths between arbitrary two nodes. Each path label is the concatenation of the labels of
all edges on the path. Denote by pals(T ) the set of all palindromic substrings of a tree T
and by PAL(n) the maximum size of pals(T ) over all trees T with n edges.

Fig. 1 illustrates palindromic substrings in a sample tree. Note that palindromes in a
word of length n naturally correspond to palindromic substrings in a path of n edges.

c

a b

b

c a

c

a

c
a

b c

Figure 1: A sample tree T with pals(T ) = { ε (empty word), a, b, c, aa, aca, acaaca,
bcb, bccb, caac, cbc, cbcbc, cc }. An occurrence of a palindrome aca is marked red,
and an occurrence of a palindrome cbcbc is marked green.

The study of the palindromic complexity of trees was initiated by Brlek, Lafrenière, and
Provençal [4], who constructed a family of trees with n edges containing Θ(n1.5) distinct
palindromic substrings. They conjectured that there are no trees with asymptotically
larger palindromic complexity and proved this claim for a special subclass of trees.

Our Results. We show that PAL(n) = O(n1.5). This bound is tight by the construction
given in [4]; hence, we completely settle the asymptotic maximum palindromic complex-
ity for trees. We also provide an O(n1.5 log0.5 n)-time algorithm reporting all distinct
palindromes and an O(n log2 n)-time algorithm finding the longest palindrome in a tree.

Related Work. Palindromic complexity of words was studied in various aspects. This
includes algorithms determining the complexity [14], bounds on the average complex-
ity [1], and generalizations to circular words [20]. Finite and infinite palindrome-rich
words received particularly high attention; see e.g. [3, 8, 12]. This class contains, for
example, all episturmian and thus all Sturmian words [8].

Recently, some almost exact bounds for the number of distinct palindromes in star-like
trees have been shown by Glen, Simpson, and Smyth [13]. The palindromes in directed
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trees have been also studied. Mieno, Funakoshi, and Inenaga [19] presented O(n)-time
algorithms computing all maximal palindromes and all distinct palindromes in a trie,
improving upon earlier work of Funakoshi, Nakashima, Inenaga, Bannai, and Takeda [10].

In the setting of labeled trees, other kinds of regularities were also studied. It has
been shown that a tree with n edges contains O(n4/3) distinct squares [6] and O(n)
distinct cubes [18]. Both bounds are known to be tight. Interestingly, the lower-bound
construction for squares resembles that for palindromes [4].

Outline of the Paper. In Section 2, we introduce basic terminology and a combinato-
rial toolbox. Next, in Section 3.1, we briefly describe the outline of the proof of the upper
bound on the number of distinct palindromes. In Section 3.2, we introduce the special
family of trees called spine trees and prove the upper bounds for those trees. Finally, in
Section 3.3, we show how every tree can be decomposed into spine trees, and we com-
bine those results to obtain the upper bound on the number of distinct palindromes. In
Section 4, we introduce an algorithmic toolbox and provide an O(n1.5 log0.5 n)-time algo-
rithm reporting all distinct palindromes. Next, in Section 5, we show an O(n log2 n)-time
algorithm finding the longest palindrome in a tree.

2 Preliminaries

A word w is a sequence of characters w[1], w[2], . . . , w[|w|] ∈ Σ, often denoted w[1..|w|].
A substring of w is any word of the form w[i..j]; if i = 1 (j = |w|), then it is called
a prefix (a suffix, respectively). The reverse of a word w (the sequence of characters
w[|w|], w[|w| − 1], . . . , w[2], w[1]) is denoted by wR. A period of w is an integer p, 1 6 p 6
|w|, such that w[i] = w[i+p] for i ∈ {1, 2, . . . , |w|−p}. The shortest period of w, denoted
per(w), is the smallest such p.

2.1 Some Combinatorics of Words

The following well-known periodicity lemma characterizes the properties of periods.

Lemma 1 (Periodicity Lemma [9]). If p, q are periods of a word w of length |w| >
p+ q − gcd(p, q), then gcd(p, q) is also a period of w.

The following lemma is a straightforward consequence of the Periodicity Lemma.

Lemma 2. If v is a substring of a word u with period p 6 1
2
|v|, then per(u) = per(v).

Proof. Suppose that pu = per(u) and pv = per(v) yet pu 6= pv. Since v is a substring of u
and p is a period of u, we clearly have

pv 6 pu 6 p 6 1
2
|v|.

The word v and its periods pv and pu meet the conditions of the Periodicity Lemma, so
gcd(pv, pu) is also a period of v. By definition of pv as the shortest period of v, this implies
pv = gcd(pv, pu), i.e., that pu = a · pv for some integer a > 1. But then pv is also a period
of the whole word u — a contradiction.
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We have the following connection between periods and palindromes.

Observation 3. If a palindrome v is a suffix of a longer palindrome u, then v is a prefix
of u and thus |u| − |v| is a period of both u and v.

2.2 Centroid Decomposition

For a tree T and its node r, denote by pals(T, r) the set of palindromic substrings of T
corresponding to simple paths containing the node r.

Lemma 4. Let ε > 0 be a constant. If |pals(T, r)| = O(|T |1+ε) holds for every tree T and
its node r, then PAL(n) = O(n1+ε) holds for every positive integer n.

Proof. We follow the approach from [6] using the folklore fact that every tree T on n edges
contains a centroid node r such that every component of T \ {r} has at most n

2
edges.

We separately count palindromic substrings corresponding to the paths going through the
centroid r and paths fully contained in a single component of T \ {r}. Finally, we obtain
the following recurrence for PAL(n), the maximum number of palindromes in a tree with
n edges:

PAL(n) 6 O(n1+ε) + max

{∑
i

PAL(ni) : max
i

ni 6 n
2
and

∑
i

ni 6 n

}
.

It solves to PAL(n) = O(n1+ε).

2.3 D-Trees

For a tree T and its node r, we consider directed acyclic graphs, named D-trees, such
that pals(T, r) is a subset of palindromic strings corresponding to simple directed paths
in such graphs containing the node r.

Define a double tree D = (T`, Tr, r) as an edge-labeled tree consisting of two trees T`
and Tr sharing a common root r but otherwise disjoint. The edges of T` and Tr are directed
to and from r, respectively. The size (number of edges) of D is defined as |D| = |T`|+ |Tr|.

For any nodes u, v ∈ D, we denote by path(u, v) the path from u to v and by val(u, v)
the sequence of the labels of edges on this path. We further denote

dist(u, v) = |val(u, v)| and per(u, v) = per(val(u, v)).

A substring of D is any word val(u, v) such that u ∈ T` and v ∈ Tr. We say that a
path path(u, v) is palindromic if val(u, v) is a palindrome. Denote by pals(D) the set of
palindromic substrings of a double tree D.

We consider only deterministic double trees (D-trees, in short), meaning that all the
edges outgoing from a node have distinct labels, and similarly all the edges incoming into
a node have distinct labels. An example of such a D-tree is shown in Fig. 2.
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Figure 2: To the left: an example undirected tree with pals(T, r) containing 9 palindromic
substrings of length two or more bcb, bccb, aca, cbc, caac, cc, cbcbc, aa, acaaca.
To the right: a D-tree Ψ(T, r) obtained after rooting the tree at r, merging both subtrees
connected to r with edges labeled by c, and duplicating the resulting tree.

Trees ⇒ D-Trees. For a tree T and its node r, we construct a D-tree Ψ(T, r) =
(Tl, Tr, r) in the following way: We root T at r directing all the edges so that they point
towards the root and then determinize the resulting tree by repeatedly gluing together
two children of the same node whenever their outgoing edges have the same label. Finally,
we create a D-tree by duplicating the tree and changing the directions of the edges in the
second copy; see Fig. 2 for a sample application of this process.

It is easy to see that, for any simple path from u to v going through r in the original
tree, we can find u′ ∈ T` and v′ ∈ Tr such that val(u, v) = val(u′, v′). This implies the
following fact.

Fact 5. pals(T, r) ⊆ pals(Ψ(T, r)).

Note that pals(T, r) might be a proper subset of pals(Ψ(T, r)). For example, in the
tree T depicted in Fig. 2, a palindrome bb appears in pals(Ψ(T, r)) but not in pals(T, r).

3 Proof of O(n1.5) Upper Bound

Due to Lemma 4, it is enough to consider palindromic paths passing through a fixed node
r of the tree. Fact 5 reduces our task to bounding the number of distinct palindromes in
a D-tree, which is easier.

Consider a D-tree (Tl, Tr, r) and a directed path path(u, v) from u ∈ Tl to v ∈ Tr.
We define the central part of path(u, v) as the subpath path(u′, v′) such that dist(u, u′) =
dist(v′, v) and r ∈ {u′, v′}. By symmetry of the counting problem (up to edge reversal
in a double tree), we henceforth consider only palindromic paths path(u, v) such that
dist(u, r) > dist(r, v). The central part of such a path is of the form path(u′, r) for some
u′ ∈ Tl (intuitively, this means that path(u, v) is centered within Tl).

Our proof relies on a particular family of D-trees that we call spine trees. A spine
tree is a D-tree with a distinguished path, called the spine, joining nodes s` ∈ T` and
sr ∈ Tr. Additionally, we insist that this path cannot be extended preserving the period
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Figure 3: A spine tree whose spine, path(sl, sr), has period 2 and is depicted as a horizontal
path. The palindrome val(u, v) = x1 · x2 · xR1 = aaaba bab abaaa is induced by this spine
tree, and the value of its central part is x2 = bab.

p = per(s`, sr). We say that a palindromic substring val(u, v) is induced by a spine tree
if the central part of path(u, v) is a fragment of the spine of length at least p, where p is
the period of the spine; see Figures 3 and 4.

Remark 6. A spine tree with n edges may induce Ω(n1.5) distinct palindromes; see the
construction of the tree used in lower bound proof presented by Brlek et al. [4].

3.1 Combinatorial Outline

The structure of the proof is described informally as follows.
• We show that the number of palindromes induced by a spine tree is O(n1.5).
• We identify so-called middle palindromes among the palindromes in a D-tree. The

number of the remaining palindromes is easily bounded by O(n1.5).
• We cover the D-tree with smaller spine trees of linear total size.
• We show that each middle palindrome is induced by at least one of the spine trees.
• Now, the upper bound on all palindromes in the D-tree follows from the upper

bounds on palindromes induced by spine trees.

3.2 Number of Palindromes Induced by a Spine Tree

For a node u of the spine tree, let s(u) denote the nearest node of the spine (if u is al-
ready on the spine, then u = s(u)). Define the label L(u) of a node u ∈ T` as the prefix
of val(u, sr) of length dist(u, s(u)) + p, where p = per(sl, sr). Similarly, the label L(v)
of a node v ∈ Tr is the reversed suffix of val(s`, v) of length p + dist(s(v), v) (see Fig-
ure 4). We leave the label undefined if val(u, sr) or val(s`, v) is not sufficiently long, i.e.,
if dist(s(u), sr) < p or dist(s`, s(v)) < p, respectively.

Since the spine tree is deterministic, it satisfies the following property.

Fact 7. If u ∈ T`, v ∈ Tr, and val(u, v) is an induced palindrome, then L(u) = L(v) and
val(s(u), s(v)) is an inclusion-wise maximal fragment of val(u, v) admitting period p.

Denote by VL the set of nodes of T` ∪ Tr with label L and by PL the set of induced
palindromes corresponding to paths with endpoints in VL. The following bound holds for
every label L.
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the center of path(u, v)

the central part of path(u, v)

sl srr

u v

s(u) s(v)

L(u) L(v)

Figure 4: A spine tree, whose spine is the path from s` to sr, with an induced palindrome
val(u, v). Observe that L(u) = L(v) is a prefix of the palindrome. Note that dist(s(u), r) >
p (because the central part is of length at least p) but dist(r, s(v)) might be smaller than p.

Proposition 8. |PL| 6 n.

Proof. We use the following simple property.

Claim 9. Assume z is a factor of a given word with period p. Then, z is uniquely
determined by its length |z| and its length-p prefix z[1..p].

Every palindrome val(u, v) in PL starts with L and ends with LR. Consider the internal
part val(s(u), s(v)) of this palindrome obtained by removing the prefix and the suffix of
length |L| − p; this part has period p. Due to the claim above, such an internal part is
uniquely determined by its length and length-p prefix, both of which are determined by
the palindrome length and the label L. Thus, PL contains at most one palindrome of any
given length, which may range from |L| to n. Consequently, |PL| 6 n− |L|+ 1 6 n.

Lemma 10. There are at most (n + 1)
√
n distinct palindromic substrings induced by a

given spine tree of size n.

Proof. Due to Fact 7, the set of palindromes induced by a given spine tree equals
⋃
L PL.

Obviously, |PL| 6 |VL|2 since there are at most |VL|2 paths with endpoints in VL. Hence,
by Proposition 8 and the disjointness of sets VL, we know that

|PL| 6 min(n, |VL|2) and
∑
L

|VL| 6 n+ 1.

Now, using the inequality min(x, y) 6
√
xy (valid for all x, y > 0), the number of

distinct palindromes induced by the spine tree can be bounded as follows:∑
L

|PL| 6
∑
L

min(|VL|2, n) 6
∑
L

|VL|
√
n 6 (n+ 1)

√
n.
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3.3 Number of All Palindromes

We start with the definition of middle palindromes.

Definition 11. A palindrome P = val(u, v) is a middle palindrome if the central part C
of this palindrome satisfies per(C) 6 1

2

√
n and α 6 |C| 6 |P | − 2α, where α = d2

√
ne,

and extending C by α characters in each direction preserves the shortest period per(C).

Next, we show that there are O(
√
n) non-middle palindromes val(u, v) for fixed node

u ∈ Tl (and hence O(n1.5) in total), so we can focus on counting middle palindromes.

Lemma 12. Consider a node u ∈ Tl and palindromic suffixes C1, . . . , Ck of val(u, r) such
that |C1| > · · · > |Ck|. For each i ∈ [1..k], there is at most one palindrome P = val(u, v)
with central part Ci. If i ∈ [2α..k − α], then such a palindrome is a middle palindrome.

Proof. Consider a palindrome P = val(u, v) with central part Ci. Observe that |Pi| =
2 dist(u, r)− |Ci| and dist(u, r) > 1

2
|Pi|, so val(u, r) and |Ci| determine the palindrome P .

If i ∈ [α..k − α], then |Ci| > |Ck−α| > α because we excluded the α shortest suffixes
Ck−α+1, . . . , Ck. Let us now prove that per(Ci) 6 1

2

√
n holds for i ∈ [α..k − α]. By

Observation 3, |Cj| − |Cj+1| is a period of Cj for 1 6 j 6 i. Since

i∑
j=1

(|Cj| − |Cj+1|) = |C1| − |Ci+1| < |C1| 6 n,

for some j ∈ [1..i] we have

per(Cj) 6 |Cj| − |Cj+1| 6 n
i
6 1

2

√
n.

Moreover, Ci is a suffix of Cj, so we indeed have per(Ci) 6 per(Cj) 6 1
2

√
n.

Since Ci is a substring of Cα of length |Ci| > α >
√
n > 2 · per(Cα), Lemma 2 further

implies per(Ci) = per(Cα). Moreover, for i ∈ [2α..k − α], we have

|Cα| > |Ci|+ i− α > |Ci|+ α,

so extending Ci by α characters to the left preserves the period per(Ci) = per(Cα). By
symmetry of P , the extension to the right also preserves the period. In particular, |P | >
|Ci|+ 2α. This concludes the proof that P is a middle palindrome if i ∈ [2α..k − α].

Let us choose any node s ∈ T` such that

dist(s, r) = α and per(s, r) 6 1
2

√
n.

Then, extend the period of val(s, r) to the left and to the right as far as possible, arriving
at nodes s` and sr, respectively. We create a spine tree with the spine corresponding to
the path from s` to sr as shown in Figure 5. We attach to the spine all subtrees hanging
off the original path at distance at least α from the root. In other words, a node u ∈ T`
which does not belong to the spine is added to the spine tree if dist(s(u), r) > α and
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Figure 5: A spine tree constructed for a node s ∈ Tl in a D-tree. Note that we do not
attach subtrees at distance less than α from the root.

a node v ∈ Tr — if dist(r, s(v)) > α. If dist(r, sr) < α, then this procedure leaves no
subtrees hanging in Tr, so we do not create any spine tree for s.

Now, let us consider a middle palindrome P = val(u, v). By definition, its central part
C satisfies |C| > α and per(C) 6 1

2

√
n. Moreover, Lemma 2 implies per(C) = per(s, r) for

the unique node s ∈ T` within C located at distance α from the root. Consequently, C lies
on the spine of the spine tree created for s, and u belongs to a subtree attached to the spine.
Additionally, since C can be extended by α characters to the right preserving the period,
the other endpoint v must also belong to such a subtree in Tr (that is, dist(r, s(v)) > α).
Hence, every middle palindrome is induced by some spine tree.

The spine trees are not disjoint, but, nevertheless, their total size is small.

Lemma 13. The sizes n1, . . . , nk of the created spine trees satisfy
∑

i ni 6 2n.

Proof. We claim that at least ni − α edges of the ith spine tree are disjoint from all
the other spine trees. Let ci be the node on the spine of the ith spine tree such that
dist(ci, r) = b

√
nc and similarly let si satisfy dist(si, r) = α. Recall that per(si, r) 6 1

2

√
n.

Thus, Lemma 2 yields per(si, r) = per(ci, r). Since the tree is deterministic, ci uniquely
determines si and hence the whole spine tree. Thus, the nodes ci are all distinct and so
are all the edges in the subtree of ci.

A symmetric argument shows that all nodes di on the spine of the ith spine tree such
that dist(r, di) = b

√
nc are also all distinct, and so are all the edges in the subtree of di.

Therefore, we proved
∑

i(ni − 2b
√
nc) 6 n.

Each spine tree has at least 2α edges on the spine, so this yields ni > 2α > 4b
√
nc

and ni 6 2(ni − 2b
√
nc). Hence, we obtain∑

i

ni 6 2
∑
i

(ni − 2b
√
nc) 6 2n.

Lemma 14. A D-tree with n edges contains O(n1.5) distinct palindromic substrings.

Proof. By Lemma 10, the number of palindromes induced by the ith spine tree is at
most (ni + 1)

√
ni. Accounting for the O(n1.5) palindromes which do not occur as middle

palindromes, the total number of palindromes becomes

O(n1.5) +
∑
i

(ni + 1)
√
ni 6 O(n1.5) +

∑
i

(ni + 1)
√
n = O(n1.5).
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Due to Lemma 4 and Fact 5, we obtain the following result:

Theorem 15. A tree with n edges contains O(n1.5) distinct palindromic substrings.

4 Algorithm Reporting All Distinct Palindromes

In this section, we consider the following problem for palindromes in trees:

Problem 16 (ReportAll). Given a tree T with n edges, each labeled by a single
character from the alphabet Σ, report all distinct palindromic substrings of T .

Among various ways of representing a palindromic substring P , perhaps the most
natural choice is to use a pair for nodes (u, v) such that val(u, v) = P . For efficiency
reasons, we use a slightly different format: each palindrome P is reported as triple (`, u, v)
such that ` = |P | is the length of P and val(u, v) = P [1..

⌈
`
2

⌉
] is the first half of P .

4.1 Algorithmic Tools

We use the tools similar to the ones described in [17, Section 3] but tailored to the
palindromic case.

We say that a node v is an ancestor of a node u in a given D-tree if there is a directed
path from u to v. Additionally, we define depth(u) in D-tree as a distance between u and
the root r (ignoring the edge orientation).

Lemma 17. A family of D-trees D1, . . . , Dk with n edges in total can be preprocessed in
O(n) time so that following operations can be performed in O(1) time:

• dist(u, v) – the distance between nodes u and v;
• up(u, h) – the node v on a path from u towards the root at distance h from u;
• isAncestor(u, v) – decides if v is an ancestor of u;
• perLen(u) – the shortest period of the label of the path between u and the root.

Proof. The dist queries can be implemented by precomputing the depth of each node and
using the Lowest Common Ancestor (LCA) queries; see [16]. The up queries are, in fact,
the Level Ancestor (LA) queries [2]. The period lengths perLen(u) can be calculated from
the border array, which can be constructed in O(n) time [17].

Lemma 18. A family of D-trees D1, . . . , Dk with n edges in total can be preprocessed in
O(n log n) time so that following operations can be performed in O(1) time:

• label(u, v) – returns an integer identifier (from range [1..n2]) that represents the word
val(u, v) (this operation is defined if u is an ancestor of v or v is an ancestor of u);

• isEqual(u1, v1, u2, v2) – decides if val(u1, v1) = val(u2, v2);
• isPalindrome(u, v) – decides if a word val(u, v) a palindrome;
• exists(Di, u, v) – for Di = (Li, Ri, ri), decides if there exists a node w ∈ Ri such that

val(w, ri) = val(u, v) (this operation is defined only if u, v ∈ Li and u is an ancestor
of v or v is an ancestor of u);
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• child(u, c) – returns the child of u with label c (a null value if no such child exists).

Proof. Operations label, isEqual, and isPalindrome can be implemented using a Dictionary
of Basic Factors (DBF) [7, 17], which requires O(n log n) preprocessing time. The only
extension needed is that, for each basic factor, we also store the identifier of its reverse.
For operation exists, we store the DBF codes of all possible values of val(w, r) in a static
dictionary with constant lookup time. This can be achieved using deterministic dictio-
naries of [15]. The same approach as for exists can be used to implement child: for each
tree edge (u, v) with label c, we store a dictionary entry with key (u, c) and value v.

Recall that we denoted α = d2
√
ne.

Lemma 19. For a double tree D = (Tl, Tr, r) with n edges, the spine decomposition can
be calculated in O(n) time, assuming that D has been preprocessed with Lemma 17.

Proof. We start with calculating the set S consisting of all nodes u ∈ Tl with dist(u, r) = α
and per(u, r) 6 1

2

√
n. Since D has been preprocessed with Lemma 17, the set S can be

calculated in O(n) time. Observe that, for any node u ∈ S, due to periodicity of val(u, r),
the path (u, r) has at least

√
n distinct edges from the all other paths (u′, r) for u′ ∈ S\{u};

hence, |S| 6
√
n.

Next, for each candidate node u ∈ S, we extend path(u, r) to a spine path(sl, sr). For
this, we locate the lowest descendant sl of u such that per(sl, r) = per(u, r). Such a node
can be located by traversing the subtree of u with child queries. Similarly, we traverse Tr
starting from the root r to locate the lowest node in sr such that per(u, sr) = per(u, r).
If dist(r, sr) > α, then we create a spine tree with the spine (sl, sr), attaching all subtrees
to every spine node at distance at least α from the root.

In this procedure, only the first b
√
nc edges on the path from r to sr can be visited

multiple times; since |S| <
√
n, the total processing time of such edges is still O(n).

4.2 Algorithm for Spine Trees

For efficient processing of spine trees, we need one additional lemma:

Lemma 20. [FFT Application] Given two sets of integers A,B ⊆ [0, . . . , n] the set
A⊕B = {a+ b : a ∈ A, b ∈ B} can be computed in O(n log n) time.

Proof. We define two polynomials

fA(x) =
∑
i∈A

xi, fB(x) =
∑
i∈B

xi.

Using FFT, we can multiply two polynomials with integer coefficients in O(n log n)
time [5]. Clearly, j ∈ A ⊕ B if and only if f(x) = fA(x) · fB(x) has a non-zero coef-
ficient at xj.

Note that the complexity of the following algorithm is very close to the tight bound
O(n1.5) on the number of distinct palindromes induced by a spine tree (see Lemma 10).
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Lemma 21. Given a spine tree S = (Tl, Tr, r) with n edges, it is possible to construct in
time O(n1.5 log0.5 n) the set of palindromes induced by this spine tree.

Proof. Our approach is very similar to the one used in the proof of Lemma 10. Let us
assume that the spine of S has period p. We identify the labels L(u) for each node u ∈ Tl
with dist(s(v), r) > p and L(v) for each v ∈ Tr. If the tree is preprocessed with Lemmas 17
and 18, such labels can be retrieved and represented in constant time and space.

Next, we sort the labels in O(n log n) time and partition the nodes into classes of
nodes sharing the same label.

Each class VL with at most
√
n log n nodes can be inspected in O(|VL|2) time. For

each x ∈ VL ∩ Tl and y ∈ VL ∩ Tr, we check in O(1) time the condition isPalindrome(x, y)
and report the palindrome if the test succeeds.

For each class VL with more than
√
n log n nodes, we use Lemma 20 to speed up

the calculations. First, we need to verify if the spine part of the palindromes from VL is
palindromic. This can be checked by locating any pair of nodes x ∈ VL∩Tl and y ∈ VL∩Tr.
The condition isPalindrome(x, y) is true if and only if any two nodes x′ ∈ VL ∩ Tl and
y′ ∈ VL ∩ Tr yield a palindrome val(x′, y′). The lengths of these palindromes are given by
the set

∆L = {dist(x, y) : x ∈ VL ∩ Tl, y ∈ VL ∩ Tr}.

Claim 22. The set ∆L can be computed in time O(n log n).

Proof. Let XL = {dist(x, r) : x ∈ VL ∩ Tl} and YL = {dist(r, y) : y ∈ VL ∩ Tr}. The
set ∆L can be expressed as XL ⊕ YL, so it can be computed in O(n log n) time using
Lemmas 17 and 20.

Recall (from the proof of Proposition 8) that every palindrome in PL has unique length,
so the set ∆L provides a complete description of PL. However, this representation does
not allow removing duplicates across multiple labels and spine trees. Moreover, Claim 22
does not provide witness occurrences of palindromes in PL.

Nevertheless, we can represent these palindromes following way. Let x0 be a node
from VL of maximum depth. For each length d ∈ ∆L, we report the palindrome of
length d whose left half is val(x0, up(x0, dd2e)); by construction of x0 and ∆L, we have
depth(x0) > dd

2
e. Observe that the underlying palindrome might not occur starting at

the node x0, and we may report palindromes whose occurrences are centered in Tr.

4.3 Algorithm for General D-trees

In our algorithm, we will use a similar approach to the one used in the proof of Lemma 14.
However, we cannot use the construction Ψ(T ), which was useful in obtaining the combi-
natorial bound, since simple paths in Ψ(T ) can correspond to non-simple walks in T (see
Figure 6).

First, we strengthen our notion of D-trees, because we need to make sure that all
paths in D-tree correspond to simple paths in the original tree. The second problem is
the efficient calculation of the palindromes in spine trees.
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Figure 6: An undirected tree T and its D-tree D = Ψ(T ) = (Tl, Tr, r). Note that D
contains a palindrome baaaab, which is not present in the original tree T .

For both short and long palindromes, it is possible to manually check if the reported
palindrome occurs in the original tree; unfortunately, for the middle palindromes, this is
not possible. This is caused by a lack of witnesses (endpoint nodes) for middle palindromes
reported in Lemma 21.

We resolve this issue with the following lemma:

Lemma 23. There exists an algorithm that, given an undirected tree T with n edges, in
O(n log n) time builds a decomposition of T into a family of D-trees D such that:

• each simple path in D ∈ D corresponds to a simple path in T with the same value;
• for each path in T , there exists a D-tree D = (Tl, Tr, r) ∈ D and a path path(u, v)
in D with the same value such that u ∈ Tl, v ∈ Tr, and dist(u, r) > dist(r, v);

• the total number of edges in all double trees D ∈ D is O(n log n).

Proof. The decomposition D for a tree T can be created recursively as follows:

1. identify the centroid node r of T ;
2. partition the subtrees adjacent to r into two groups and form two edge-disjoint trees
T1, T2 sharing the node r and satisfying max(|T1|, |T2|) 6 3

4
|T |;

3. create deterministic versions T ′1 and T ′2 of trees T1 and T2, respectively;
4. add D-trees (T ′1, T

′
2, r) and (T ′2, T

′
1, r) to D;

5. recursively process T1 and T2.

Since (T1, T2, r) and (T2, T1, r) are orientations of T (with no edges doubled), every
simple path in their deterministic versions (T ′1, T

′
2, r) and (T ′2, T

′
1, r) corresponds to a simple

path in T . The total size of the created decomposition is O(n log n).

We are now ready to outline the algorithm. Given a tree T , we decompose it into
a family of D-trees D. The family of trees D is preprocessed using Lemmas 17 and 18.
We process all trees from D simultaneously to obtain consistent DBF identifiers between
different trees. Then, each double tree D ∈ D is processed separately, and we find the
middle palindromes using spine decomposition and all other palindromes using exhaustive
search. Finally, we remove possible duplicates in reported palindromes using sorting.

Lemma 24. For a D-tree D with n edges, the ReportAll problem can be solved in
O(n1.5 log0.5 n) time.
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Proof. The pseudocode of the solution is given in Algorithm 1. The correctness of the
algorithm is proved by Lemmas 12 and 14. It remains to provide an O(n1.5 log0.5 n)-
time implementation. Constructing the spine decomposition requires O(n) time due to
Lemma 19, and each spine S can be processed in O(|S|1.5 log0.5 |S|) time due to Lemma 21.
Since the total size of the spine trees is O(n), this part takes O(n1.5 log0.5 n) time in total.

For handling the non-middle palindromes, we need a data structure to operate on
the lists Lu representing the palindromic suffixes of val(u, r). We identify all nodes X =
{x ∈ D : val(x, r) is a palindrome} using Lemma 18. Then, we create a subtree DX which
contains only nodes from X and preprocess it for Level Ancestor queries [2]. Additionally,
for each u ∈ D, we store its nearest ancestor in DX and its depth in DX (equal to |Lu|).
This way, any element of Lu can be retrieved in O(1) time using an LA query on DX .

For each element v′ ∈ Lu, we test the existence of an appropriate node v in O(1) time
using the function exists.

Algorithm 1: FindPalindromesInDoubleTree(D = (Tl, Tr, r))

Output: a representation of palindromes in D with start and center in Tl and
end in Tr

preprocess the tree D for queries from Lemmas 17 and 18
P := ∅
// handle middle palindromes
decompose D into spine trees S1, . . . , Sk
foreach spine tree Si do

add to P palindromes induced by Si // reported using Lemma 21
// handle first (shorter) and last (longer) palindromes
foreach u ∈ Tl do

let Lu be the list of ancestors v′ of u such that val(v′, r) is a palindrome, with
elements of Lu ordered by decreasing depths
First := the first 2α− 1 nodes from Lu
Last := the last α nodes from Lu
foreach v′ ∈ First ∪ Last do

if exists(D, u, v′) then // there is v ∈ Tr with val(v, r) = val(u, v′)
add to P the palindrome val(u, v)

return P

Theorem 25. For a tree T with n edges, the ReportAll problem can be solved in
O(n1.5 log0.5 n) time.

Proof. First, we decompose the tree T into a set D = {D1, . . . , Dk} of D-trees using
Lemma 23. All trees are preprocessed using tools from Lemmas 17 and 18. This step
takes O(n log2 n) time.

Next, we calculate palindromes in all D-trees Di ∈ D using Algorithm 1. Due to
construction of D this requires time

T (n) = T (βn) + T ((1− β)n) +O(n1.5 log0.5 n)
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(for 1
4
6 β 6 3

4
), which is T (n) = O(n1.5 log0.5 n). The total number of the returned

palindromes (including duplicates) is

P (n) = P (βn) + P ((1− β)n) +O(n1.5)

(for 1
4
6 β 6 3

4
), which is P (n) = O(n1.5).

Finally, we remove duplicates from P . Since all palindromes are represented by the
length and the integer identifier of the first half (generated by label), we can sort P in
O(|P |) = O(n1.5) time.

5 Algorithm Finding the Longest Palindrome in Tree

In this section, we consider the following problems for palindromes in trees:

Problem 26 (PalindromeTest). Given an integer k > 0 and a tree T with n edges,
each labeled by a single character from the alphabet Σ, decide whether T contains a
palindrome of length exactly k.

Problem 27 (FindLongest). Given a tree T with n edges, each labeled by a single
character from the alphabet Σ, find the length of the longest palindrome in T .

Theorem 28. Given a tree T with n edges, each labeled by a single character from
the alphabet Σ, the PalindromeTest and FindLongest problems can be solved in
O(n log2 n) time.

Proof. First, we use Lemma 23 to decompose the tree T into a set of D-trees with
O(n log n) edges in total and Lemmas 17 and 18 to preprocess these D-trees; this takes
O(n log2 n) time in total.

For each D-tree, the PalindromeTest problem can be solved in linear time using
Algorithm 2 provided below. We consider each node u ∈ Tl and the palindromes starting
at u with the center in Tl. If depth(u) > k, then there is no path(u, v) of length k with
v ∈ Tr. Otherwise, we find a node v′ = up(u, k − depth(u)). We know that a potential
palindrome starting at u of size k ends in some node v ∈ Tr with distance k − depth(u)
from r. We check, using the function exists(D, u, v′), if there is such a node v satisfying
val(v, r) = val(u, v′).

Algorithm 2: Test if there exists palindrome of length k in D-tree D = (Tl, Tr, r)

foreach u ∈ Tl do
if depth(u) 6 k then // see Fig. 7

v′ := up(u, k − depth(u));
if isPalindrome(v′, r) and exists(D, u, v′) then

return true; // there is a node v ∈ Tr with val(v, r) = val(u, v′)

return false;
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Figure 7: Illustration of Algorithm 2 for a D-tree with root r.

The FindLongest problem can be solved using binary search on top of our solu-
tion to the PalindromeTest problem. Both the preprocessing and the application of
PalindromeTest (for O(log n) lengths and D-trees of O(n log n) edges in total) take
O(n log2 n) time.

6 Open problem

We conclude with the following open problem:

• Given labelled tree T , report pals(T ) in O((|pals(T )|+ |T |) logO(1) |T |) time.
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